3.802 \(\int \frac {\sqrt {e x} \sqrt {c+d x^4}}{a+b x^4} \, dx\)

Optimal. Leaf size=71 \[ \frac {2 (e x)^{3/2} \sqrt {c+d x^4} F_1\left (\frac {3}{8};1,-\frac {1}{2};\frac {11}{8};-\frac {b x^4}{a},-\frac {d x^4}{c}\right )}{3 a e \sqrt {\frac {d x^4}{c}+1}} \]

[Out]

2/3*(e*x)^(3/2)*AppellF1(3/8,1,-1/2,11/8,-b*x^4/a,-d*x^4/c)*(d*x^4+c)^(1/2)/a/e/(1+d*x^4/c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.107, Rules used = {466, 511, 510} \[ \frac {2 (e x)^{3/2} \sqrt {c+d x^4} F_1\left (\frac {3}{8};1,-\frac {1}{2};\frac {11}{8};-\frac {b x^4}{a},-\frac {d x^4}{c}\right )}{3 a e \sqrt {\frac {d x^4}{c}+1}} \]

Antiderivative was successfully verified.

[In]

Int[(Sqrt[e*x]*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

(2*(e*x)^(3/2)*Sqrt[c + d*x^4]*AppellF1[3/8, 1, -1/2, 11/8, -((b*x^4)/a), -((d*x^4)/c)])/(3*a*e*Sqrt[1 + (d*x^
4)/c])

Rule 466

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Dist[k/e, Subst[Int[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/e^n)^p*(c + (d*x^(k*n))/e^n)^q, x], x, (e*
x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Intege
rQ[p]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {e x} \sqrt {c+d x^4}}{a+b x^4} \, dx &=\frac {2 \operatorname {Subst}\left (\int \frac {x^2 \sqrt {c+\frac {d x^8}{e^4}}}{a+\frac {b x^8}{e^4}} \, dx,x,\sqrt {e x}\right )}{e}\\ &=\frac {\left (2 \sqrt {c+d x^4}\right ) \operatorname {Subst}\left (\int \frac {x^2 \sqrt {1+\frac {d x^8}{c e^4}}}{a+\frac {b x^8}{e^4}} \, dx,x,\sqrt {e x}\right )}{e \sqrt {1+\frac {d x^4}{c}}}\\ &=\frac {2 (e x)^{3/2} \sqrt {c+d x^4} F_1\left (\frac {3}{8};1,-\frac {1}{2};\frac {11}{8};-\frac {b x^4}{a},-\frac {d x^4}{c}\right )}{3 a e \sqrt {1+\frac {d x^4}{c}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 70, normalized size = 0.99 \[ \frac {2 x \sqrt {e x} \sqrt {c+d x^4} F_1\left (\frac {3}{8};-\frac {1}{2},1;\frac {11}{8};-\frac {d x^4}{c},-\frac {b x^4}{a}\right )}{3 a \sqrt {\frac {c+d x^4}{c}}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Sqrt[e*x]*Sqrt[c + d*x^4])/(a + b*x^4),x]

[Out]

(2*x*Sqrt[e*x]*Sqrt[c + d*x^4]*AppellF1[3/8, -1/2, 1, 11/8, -((d*x^4)/c), -((b*x^4)/a)])/(3*a*Sqrt[(c + d*x^4)
/c])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d x^{4} + c} \sqrt {e x}}{b x^{4} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^4 + c)*sqrt(e*x)/(b*x^4 + a), x)

________________________________________________________________________________________

maple [F]  time = 0.65, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x}\, \sqrt {d \,x^{4}+c}}{b \,x^{4}+a}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^(1/2)*(d*x^4+c)^(1/2)/(b*x^4+a),x)

[Out]

int((e*x)^(1/2)*(d*x^4+c)^(1/2)/(b*x^4+a),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {d x^{4} + c} \sqrt {e x}}{b x^{4} + a}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^(1/2)*(d*x^4+c)^(1/2)/(b*x^4+a),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^4 + c)*sqrt(e*x)/(b*x^4 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {\sqrt {e\,x}\,\sqrt {d\,x^4+c}}{b\,x^4+a} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((e*x)^(1/2)*(c + d*x^4)^(1/2))/(a + b*x^4),x)

[Out]

int(((e*x)^(1/2)*(c + d*x^4)^(1/2))/(a + b*x^4), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sqrt {e x} \sqrt {c + d x^{4}}}{a + b x^{4}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**(1/2)*(d*x**4+c)**(1/2)/(b*x**4+a),x)

[Out]

Integral(sqrt(e*x)*sqrt(c + d*x**4)/(a + b*x**4), x)

________________________________________________________________________________________